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Translational and Rotational Diffusion of an 
Anisotropic Particle in a Molecular Liquid: 
Long-Time Tails and Brownian Limit 
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Formally exact equations are written down, describing the translational and 
rotational diffusion of an anisotropic tagged particle in a fluid of anisotropic 
particles. These equations are tractable in the long-time limit, and reduce to the 
solution of ordinary hydrodynamic equations supplemented by slip boundary 
conditions in the Brownian limit for a smooth tagged particle. No rotational 
viscosities or spin-diffusion constants appear in these results. The relation to 
other work is discussed. 

KEY WORDS:  Mode coupling; long time tails; Brownian, Stokes-Einstein 
law; rotational viscosity; spin field. 

1. I N T R O D U C T I O N  

When a tagged particle moves through a fluid, its collisions with the fluid 
molecules have the effect of setting up flow fields in the fluid which at later 
times react back upon the tagged particle. These flow fields are responsible 
for the famous long-time tail of the velocity correlation function (VCF), 
which is proportional to t -3/2 in three dimensions, (1'2) where t is the time. 
When the tagged particle is very large and massive, the Brownian limit, 
these flow fields may be calculated by solving the fluid hydrodynamic 
equations subject to boundary conditions imposed at the particle's surface. 
This calculation gives rise to the Stokes-Einstein form for the diffusion 
constant, D, and yields an expression for the constant of proportionality 
multiplying the t -3/2 tail. Away from this Brownian limit, though, there 
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would appear to be no justification for using the continuum hydrodynamic 
equations (although it must be noted that in practice they seem to give 
excellent results even for the case of self-diffusion, (3'4)) so a more fundamen- 
tal, microscopic theory is then required. Many of the microscopic theories 
so far developed have considered the special case of a smooth, hard sphere 
moving in a fluid of smooth, hard spheres. In this situation it is natural to 
use the methods of kinetic theory. These techniques have given a 
microscopic justification for the hydrodynamic approach in the Brownian 
limit, in the cases when the fluid is a dilute gas, (5'7) a moderately dense 
gas, (8'9) and a fluid of any density. (1~ For these smooth sphere interactions, 
the appropriate hydrodynamic boundary conditions turned out to be the 
"slip" ones. In addition, these theories were able to give a simple expression 
for the long-time behavior of the VCF for a particle of arbitrary mass and 
size (9 14)--a result that was in perfect agreement with earlier mode-coupling 
calculations. (15) If one were instead to consider a system of particles 
interacting via continuous, spherically symmetric potentials rather than 
hard sphere ones, then methods that might best be described as mode- 
coupling-like would appear to be the easiest to apply, and indeed, when 
some care is taken, the expected Brownian and long-time limits again 
emerge.(m,16, ~71 

Most real liquids, though, are not composed of spherical molecules. 
The particles instead interact via anisotropic potentials, and they also 
rotate. The tagged particle, even a spherical Brownian particle, is not nor- 
mally a smooth sphere--there is generally some surface roughness and it 
may also possess some internal degrees of freedom, i.e., it might have its 
own, internal temperature. It would therefore be of interest to extend the 
above microscopic theories to take account of these extra effects, and one 
might also hope to calculate the rotational diffusion constant, Dr, and the 
angular momentum correlation function (AMCF). In the Brownian limit, 
one should again be able to calculate these quantities using the fluid 
hydrodynamic equations, but this time applying "stick" boundary con- 
ditions at the tagged particle's surface. For the case of a spherical Brownian 
particle, the Stokes-Einstein-Debye form for Dr is obtained, and the 
AMCF is predicted to have at t 5/2 tail in three dimensions. ~18'~9) Turning 
now to microscopic theories, Mehaffey, Desai, and Kapral (2~ derived a 
"ring" kinetic equation describing a rough-sphere tagged particle moving in 
a moderately dense rough sphere fluid, and obtained the long-time forms 
both of the VCF and the AMCF for a tagged particle of arbitrary mass 
and size. In the Brownian limit, these coefficients agreed perfectly with 
those obtained from the hydrodynamic calculation. Van Beijeren and 
Dorfman (5~ have considered the flow of a dilute gas past a fixed sphere, 
with the gas consisting of nonrotating spheres which interacted with the 
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fixed sphere via both a specular and a diffuse reflection mechanism. They 
showed that in the diffusely reflecting case it was the stick boundary con- 
ditions which were appropriate, and this led to the stick hydrodynamic 
results for the drag and the torque on the fixed sphere. Thus this con- 
stituted a microscopic justification of the stick boundary condition for this 
system. Their results, when combined with the Stokes and Stokes-Debye 
relations, yielded the usual expressions for the Brownian limits of the VCF 
and AMCF. A model system in which a gas molecule's velocity is reversed 
upon colliding with the fixed sphere also seems to lead to stick boundary 
conditions. (16'21~ So far, however, there exists no general microscopic 
derivation of the stick boundary condition for fluids of arbitrary density, 
though further understanding is coming through the study of model 
systems. (22) 

When the fluid contains rotating molecules, however, people have 
wondered whether the normal hydrodynamic equations gave an adequate 
description of the fluid, even in the Brownian limit. The normal equations 
reflect the conservation of the mass, momentum, and energy of the fluid. 
However the angular momentum is also a conserved variable, and taking 
this into account leads to an additional set of hydrodynamic equations 
involving the spin field of the fluid and new transport coefficients, such as 
~/r, the rotational viscosity. ~23"24~ A mode-coupling calculation by Keyes 
and Ladanyi (25) led to an expression for Dr in the Brownian limit that 
involved q r- Hydrodynamical calculations for a spherical tagged particle 
have also been carried out by Hynes, Kapral, and Weinberg (26~ and 
Reichl. (27) By assuming certain boundary conditions on the spin field at the 
tagged particle's surface, they obtained new expressions for D, Dr, and the 
long-time tails of the VCF and AMCF, both for smooth and rough 
spheres. Reichl was able to use her results in order to explain why the light- 
scattering experiments of Paul and Pusey (28a) yielded values for D and the 
long-time coefficient of the VCF at variance with the predictions of more 
conventional hydrodynamic theories, and was in fact able to extract 
estimates of the values of t/r and the spin-diffusion coefficient 3. Later 
experimental work by Ohbayashi et  aL, (28b) however, gave values for D and 
the long-time tail in good agreement with the predictions of "conventional" 
hydrodynamics. Thus, at present, there is no consensus as to what the true 
experimental results are, so it is not clear whether there is any need to hunt 
for effects above and beyond conventional hydrodynamics. 

It would therefore seem, in the light of all this, that a complete 
microscopic theory would be highly desirable. Firstly one would like to 
more fully investigate the basis of the augmented hydrodynamic equations 
and boundary conditions used above. Secondly a microscopic theory might 
also be able to calculate the long-time behavior of the VCF and AVCF 
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away from the Brownian limit, and not be restricted to having either a 
dilute fluid or spherical particles. Thus, in the following, we consider a 
tagged particle of arbitrary mass, size, and shape in a fluid of nonspherical, 
rotating molecules, and we take the potentials of interaction to be con- 
tinuous, albeit harshly repulsive, as the particles get near each other. The 
methods to be used are simple extensions of those used to investigate the 
smooth sphere system. (1~ We do not here consider the possible effects of 
other internal degrees of freedom--that is, our tagged particle does not 
possess an internal temperature. This could well be an effect very relevant 
for understanding the stick boundary condition(5'22~it certainly must be 
important if one were dealing with problems involving heat transport. Our 
system, however, does at least formally include the effects of surface 
roughness. Thus in the following sections we consider the long-time and 
Brownian limits of the VCF and AMCF, comparing our results with those 
obtained by other means. The resolution of the problem of stick still eludes 
us, however, but this has not prevented us from offering some analysis and 
thoughts on the matter toward the end of the paper. 

2. A BRIEF R E V I E W  OF H Y D R O D Y N A M I C S  A N D  
COLLECTIVE A N G U L A R - M O M E N T U M  F L U C T U A T I O N S  IN 
M O L E C U L A R  FLUIDS 

In this section we give a quick resum~ of some of the results obtained 
by Ailawadi eta/. (24) in their investigation of the hydrodynamics of a 
molecular fluid, as many of the results will be used later on. They chose as 
dynamical variables the Fourier components of the densities of the locally 
conserved variables of the fluid--that is, the number density, nk, the 
momentum density, Pk, and the energy density, ek--and in addition they 
included the spin density, Jk. The definitions are 

rtk = E eik'ri (la) 
i 

Pk : E  Pi eik'ri ( l b )  
i 

ek = E eieikr '  (lc) 
i 

and 
(Id) Jk : E J i  e i k  ' r~ 

i 

where r i, Pi, and ei are the center-of-mass position, momentum, and total 
energy of particle i, and Ji is its angular momentum about its center of 
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mass. Mori's generalized Langevin equation (29) was then used to write 
down expressions for the time correlation functions of these variables in the 
hydrodynamic limit--that is, for small k and long times. Defining the z 
direction to be parallel to k, they showed that symmetry considerations 
prevented any coupling between Jr, and the other variables, to lowest order 
in k. Furthermore the transverse components of ,1 k only coupled to the 
transverse momentum density. This meant that in addition to the normal 
hydrodynamic equations involving nk, p~, and ek, they obtained the 
additional results that 

and 

p Vtot IkB T 
(J~,(z) JZ  k > = (2a) 

z + 4~ffpm 

< p ~ ( z ) p X k ) = p V t o t m k B T  z+k2r l /p  m t- z+4~lr/Ip 

<p~(z) JY-k> = <J~(z) px_k>* 

(2b) 

= p Vtotmk B T (2c) 
z + k2rl/prn -~ z + 4rlflIp 

<J~(z) JYk> ~-pgtot[kBT ~(k2I~ 
( \ 4 m ]  z + k2rl/pm + (2d) z + # O  

These expressions are the Laplace transforms of the time correlation 
functions with z being the transform variable. The notation is that p is the 
average number density of the fluid, V,o t the total volume of the system, k B 
Boltzmann's constant, T the absolute temperature, m and I the mass and 
moment of inertia of a fluid molecule ( I =  �89 Tr I), and r/ and r/~ the shear 
and rotational viscosities, respectively. We have only considered the low-k 
and small-z (long time) limit here--there will be higher-order terms in the 
numerators and denominators of these expressions, among which the spin 
diffusion constant, 3, appears. The microscopic definitions of ~/ and r/r, 
involving the Mori projected time evolution operator, are given in Ref. 24, 
along with a detailed discusion. With these results for the bulk fluid for 
reference, we now can turn to the problems of calculating the VCF and 
AMCF of a tagged particle in a molecular fluid. 

3. T H E  T R A N S L A T I O N A L  D I F F U S I O N  C O N S T A N T  
A N D  T H E  V C F  

As was stated in the Introduction, it is via the mutual forces exerted by 
the fluid particles and tagged particle on each other that the tagged par- 
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ticle's motion gets coupled to flow fields in the fluid, which lead to the 
long-time tails and Stokes-Einstein behavior. Thus in this section we 
investigate the VCF using very similar methods to those used in Ref. 10 
(henceforth to be called I)--that is, the VCF is firstly related to a force 
correlation function, and then the force correlation function is analyzed in 
terms of the hydrodynamic fluid variables, this analysis being conducted in 
real space, as opposed to k space, in order to allow greater physical insight 
into what the various manipulations mean. 

The VCF, denoted by C(t), is given by 

C(t) = (VI( t ) 'V  1) (3) 

where V1 is the velocity of the tagged particle. By using Mori's generalized 
Langevin equation, (29) we may express the Laplace transform of the VCF, 
C(z), as 

C(z) = fo~ dt e :'C(t) 

3k ~ Tim 1 
- - -  ( 4 a )  

z + v(z) 

where v(z), the friction coefficient, is given by 

v(z)--(3m~ksT) l ( { [ Z - Q ~ i ~ ]  -~F~} .F~)  (4b) 

Here m~ is the mass of the tagged particle, F~ is the force exerted by the 
fluid upon the tagged particle, i ~  is the Liouville operator, Q~ is the Mori 
projection operator that projects a dynamical variable orthogonal to V~, 
and we are working in three dimensions. 

We now couple F1 to the local fluctuations of the fluid's number, 
momentum, energy, and spin density around the tagged particle. Thus we 
introduce the variables 

and 

~;(i, 2) = ~, 6 ( ~ 2 -  rl~) c5(~1 -f21) 6(D2-  f2,) 
i>1 

ap(i, :2)= y' pf~(~12--r,,) ~ ( ~ -  ~r~l) ~ ( ~ 2 - - ~ i )  
i>1 

aj(i, 2)= ~ J ,6(~x:-r l i  ) ~(~r~ 1 - ~C~l) ~(~"~2-- ~ i )  
i> l  

(5a) 

(5b) 

(5c) 

ae(i, 2)= ~ ci(}(rl2--rli ) ~(~'~1- ~c21) ~(~r~2-- ff2i) (5d) 
i>1 
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where the barred variables are field variables, the unbarred dynamical 
variables. s and s i denote the Euler angles of particles 1 and i, J~ is, as 
before, the angular momentum of particle i about its center of mass, and e~ 
is the energy of the ith fluid molecule, and is given by 

e~= + ~ + U ( 1 ,  i ) + ~  ; , U(i,j) (5e) 

i , j >  1 

where U(i, j) is the anisotropic, pair potential of interaction between 
molecules i and j. In the subsequent analysis these potentials are taken to 
be short ranged and continuous, being harshly repulsive when the particles 
get very close. As these potentials are taken to be finite everywhere, 
although extremely large in regions of overlap, there is always a finite 
probability of finding the molecules at any distance apart. Thus, unlike the 
case of hard particle interactions, r~2 may take on all values in 
Eqs. (5a)-(5d). Furthermore, again as in /, it is convenient to work with 
orthogonal, fluctuating quantities, so we introduce an(l, 2) and at(i,  2), 
given by 

an(i, 2 )=  a'~(i, 2 ) -  (a~,(i, 2))  (6a) 

and schematically 

aT = ae-- ( a e ) -  (aean)(anan) -1 a, (6b) 

so that aT(i, 2) is orthogonal to a~, for all values of the field variables. We 
called the variable ar because it is closely related to the local temperature 
fluctuations in the fluid. 

We now analyze v(z) in terms of these variables for all values of the 
field variables. Firstly we note that F1 is given exactly as an integral over 
a~(1, 2), i.e., 

F~ = f di d2 V 1U(i, 2) a.(i ,  2) (7) 

where d i=d? ld~ l  and d 2 ~ - - - d r 2 d ~ 2  . Alternatively we may write, 
schematically, that 

F1 = (Flan>(anan> -1 an (8) 

which simply stresses the point that F1 is simply a linear combination of 
the variable a, at various field points. By using the continued fraction 
method of Mori theory we obtain the result 

v(z)=(3mlkBT) l(Flan(12)>,RRnn(12; 1'2 ') ,  (an( l '2 ' )F1)  (9) 
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where the asterisk means integrate over repeated variables (both angular 
and spatial), and the angled brackets denote a grand Canonical ensemble 
average. For convenience we have dropped the bars over the field variables. 
The quantity RRn, is given by the coupled integral equations 

RR=~(12; 1 '2 ' ) .  RRL~(I'2'; 1"2")=6~6(1 - 1") 6 ( 2 - 2 " )  (10a) 

and 

RR~I(12; 1'2 ')= z(a=(12) a~(l '2 ' ) )  -- ((Q~iSa=(12)) an( l '2 ' ) )  

+ ( { [ z - Q i ~ ]  -I Qi~a~(12)} QiSan(l'2')) (10b) 

In these equations the Greek suffixes assume the labels n, p, J, and T, and 
summation convention is used. Furthermore a repeated suffix also implies a 
scalar product when the suffix takes on the labels p or J. The Mori projec- 
tion operator Q projects a dynamical variable orthogonal to Vl and also to 
a~(12), for all values of c~ and field variables. 

We now investigate the small-z limit of v(z), which leads to the long- 
time tail in C(t). As the ideas involved here are almost identical to those in 
I, we shall proceed fairly rapidly. We define the far-field form of RR-~ to 
be R i, so that 

R~(12 ;  1 '2 ' )= lim RR~(12 ;  1'2') (11) 
[r12] ~ 

and thus 
RR=nl(12; 1'2 ')= R~1(12; 1'2')-S=n(12; 1'2') (12) 

where San contains all the near-field complexities. We use a frequency 
expansion, with the notation that a zero superscript means the z = 0 value 
of the quantity, a superscript of 1, the first-order correction, and so on. In 
three dimensions we would expect C~l~(z)ocz 1/2. We can then show that 

v(1)(z)=(3mlksT ) l ( F l a , ) * ( l + R R r 1 7 6 1 7 6  ~*R~I~ ) 

�9 (1 § S(~ �9 RR(~ �9 (a=F1)  (13) 

We have left out here the field variable arguments, but hopefully the form 
of the full equation is still clear. The "1" represents the same product of 
delta functions and Kronecker deltas as is given on the right-hand side of 
Eq. (10a). In order to get this equation, we used the facts that the z depen- 
dence of the memory function in Eq. (10b) (the term involving Q), was 
irrelevant as far as v (1) is concerned, so that S (1) makes no appearance, and 
also that the Fourier transform of S (~ with respect to kl and k 2 contained 
no part proportional to 6 (k~-  k2). 
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To proceed further we introduce the definition 

T t2; ' "V2= [ dl d2 dl '  d2' c i k  "~12 D~1.1(£2~) D~2~2(£22) 
k;k' J 

× T(12; 1'2') e ,k "ri2 D~i,i(£2,1), D~,2,,2(Y2,2), (14) 

where T(12; 1 2) is an arbitrary function of the field points, and D~, is a 
Wigner rotation matrix. (3°) For convenience we have left out the m, n 
dependence of the quantity on the left-hand side of Eq. (14). In the 
following, for the sake of brevity, we use l as shorthand for (l, m, n), so a 
sum over l also implies a sum over m and n. By using the orthogonality 

l properties of these D,,,s and by inverse Fourier transforming, it is 
straightforward to invert this definition and obtain T(12; 1'2') in terms of 
TktJ#i6 Because the potentials of interaction are taken to be short ranged, 

; k '  ' 

and because we also assume we are not near a critical point, R~¢(12; 1'2') 
describes pure fluid and pure tagged particle dynamics, with no correlation 
between the fluctuations as the processes are taking place far apart. We 
thus find that Wd#'V~ is diagonal--that  is, 

~ ' k ; k "  

R 'fl2;fl''2 = ( 2 7 r )  3 6(k - k') 6,1,, i 6,~,,; R~ t~ (15) 
k ; k '  

On inverting Eq. (14), and using Eq. (15), we obtain an expression for 
l;,ld2;~il~ R~a(12; 1'2') in terms of ~'~a;k:k, which may be substituted into Eq. (13) to 

give 

v(l)(z) = (3mlkBT)-1(2zr) 3 f dk 

× ~  [(Fla,5,(l+RR(O~,s(o))n~,,e-~l, .r12D]~,~(Q 1 l* ) D;~2n2(~92)] 
II ,12 

x "'~/3;kR(1)lI~2. [eik " ri:Dtlmlrtll "~(O,~D12m2n2(ff2~2)(S(O)*l ~ RR(°) + 1 )a- * ( a ,  Ft 5] 

(16) 

The long-time tail comes from the small ]k] region of this integral (k < k~, 
where k,  is a cut-off wave vector of the order of an inverse fluid correlation 
length). Let us therefore consider in detail the small-]k I behavior of o(t)u2 

~ f i ; k  " 
Firstly we note that only li = 12 = 0 terms can contribute to the long time 
tail. To see this consider the case when l: = 0 but Ii ~0.  Then one might 
conclude this term would give rise to an exponential long time decay, 
proportional to exp[ - / l ( /~  + l)D~t] for ml =n~ = 0, using the Debye for- 

Dll t~ mula for time correlation functions of the form ( m~.l(~t(t)) Dm~.~(f21)). A 
similar argument would also go through for terms for which ll = 0  but 
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12 r  naively one might expect an exponential decay. Previous 
mode-coupling analysis, (31 34) however, has shown that these correlation 
functions have themselves got long time tails, and in general 

lira ( D~l,~(f21(t)) eik'rfft)D~lnl(~Q1) e ik'rl )cYT-l--(2clq)+ 3)/2e--k21"t (17) 

where c (tt) >~ 1, and F is a constant. A similar form of long time behavior 
holds for collective fluid particle orientational decay. Furthermore some of 
these collective correlation functions contain terms proportional to 
k 2 e x p [ - k 2 U t ]  (F' a constant)--for example, for 12 = 2, these terms arise 
from the coupling of the orientational variables to the fluid shear 
modesJ 35a'b) In the formalism used here, all these effects are contained in 
the z dependence of the memory function in Eq. (10C), which we claimed 
had no influence on v (1). However, even if we use in Eq. (16) the z-depen- 
dent memory function form which corresponds to the above, we still find 
that the Ii = 12 = 0 term is the only contributor to the t -3/2 long-time tail. 
The other terms only contribute to weaker power law behavior. A more 
formal justification of these statements may be given by conducting an 
analysis of the frequency-dependent memory function in Eq. (10C) in terms 
of trilinear variables. This is simply an extension of the analysis sketched 
out in the appendix of I. 

Given that only ll = 12 = 0 terms are important, it is further easy to 
show that, again as in I, the dominant long-time tail arises from the shear 
modes. That is, the long-time tail arises simply from o(1),o0 which is given a'pp;k 

by 

{ , , } 
~,< ,oo  _ ~'f _ fl~) z + k ~ ( ~ ) m  + D)  k~(~/f?m + D )  J ' p p ; k  - -  \ i (k  B Trap) -  1 

+ longitudinal terms (18) 

Here the caret denotes a unit vector, and T is the unit tensor. We have 
neglected higher-order terms in k or z in this expression, as they do not 
contribute to the long-time tail. Contributions from Rjj and Rpd a r e  also of 
higher order in k than the term given above, so they also only give rise to a 
weaker power law long-time behavior. Thus, substitution of Eq. (18) into 
Eq. (16) and dropping all the other Rs in the sum, gives the result 

= ( 3 t a l k ,  T) 1(2~)-3 f dkf~v(k) fT , (k  ) OO),oOa.pvp~0;k (19a) V ( 1 ) ( Z )  

Ik[ < k~ 

where 

f ~' . . . .  1 2 1'2' f ~ ( k ) =  d l d 2 ( V , a . ( 1  2 ))*RR.~C~ . . . .  ) 

, -~pv, "vm)t 1'9'._, 12) e - ik '~2  (19b) 
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and 

l" 

f~"(k) j d l d 2  ik ~2 (0) . . . .  = e Sp~ =(12, 1'2') * RR(~~ 2 ,1 "2 " )  

�9 (a.(l"2") V[)  (19c) 

where #, v, and co are Cartesian components of the tensors. The long time 
tail comes from the Ikl--* 0 limits o f f l (k )  and f2(k), which are fortunately 
easily evaluated, because we have the results 

dl d2 S(~ ' 12)= -6~n(F~a , ( l ' 2 ' ) )  (20a) 

and 

dl d2 S(p)(12; 1 '2 ' )= +6~n(F~a,,( l '2 '))  (20b) 

The reason for the simplicity of this result is given in I. It is connected with 
the fact that the total momentum of the fluid can only change because of 
the forces exerted upon it by the tagged particle, whatever the complex 
fluid structure may be or whatever dynamical processes occur in the 
vicinity of this particle. Thus the integral over S~~ ~ or S(,~ ~ simply reduces to 
terms involving the force exerted by the tagged particle on the bulk fluid, 
which by Newton's third law, is the negative of the force exerted on the 
tagged particle by the fluid. In our formalism this force only makes its 
appearance in the correlation function (F1 an). If now take the z = 0 limit 
of Eq. (9), giving 

v(~ ( 3 m l k e T ) - l ( F ~ a n )  �9 RR(,, ~ �9 (anF] ' )  

it is easy to see that 

f•v(O) = --fly(0) 

= - t a l k  e Tv~~ 

(21) 

(22) 

So all that is now needed to obtain the long-time tail of the VCF is to set 
Jkl = 0 in f l (k )  andf2(k) in Eq. (19a) and then substitute the expression for 
v (~) into the formula for C (l), which is 

C(I)(z) = 3 k ~ T  v ~1) 
ms [v(O)] 2 (23) 

which comes directly from Eq. (4a). Upon using Eq. (22) for f l (0)  and 

822/39/1-2-15 
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fl(0), we find that the v (~ terms in Eq. (23) cancel, and we are left, after 
inverse Laplace transforming and doing the k integral, with the final result. 

t ~ o~ = 4 m p  1_ D t 
(24) 

This is of the exact same form as that given by previous mode coupling 
methods and microscopic theories for the diffusion of spheres. There are 
several points of interest connected with this result. Firstly it should hold 
for arbitrary mass, shape, and size of the tagged particle. Secondly, the only 
point where the mass, shape, and size of the tagged particle enter the 
expression is via the translational diffusion constant D. If, as is often the 
case for self-diffusion, D ~ t l / p m ,  then the long-time tail is determined 
almost entirely by fluid properties, irrespective of the nature of the diffusing 
particle. Thirdly we see that no rotational viscosity comes into the 
expression. We believe that this is quite reasonable, because although the 
angular momentum of the fluid is a conserved quantity, it is impossible to 
write down a local form for the angular momentum density--that is, it 
does not give rise to a true, hydrodynamic variable/36) Thus as we expect 
the long-time behavior of C ( t )  to be determined by the decay of true 
hydrodynamic fluctuations in the fluid, the absence of t/r does not surprise 
us. We do note, however, that this result differs from that given by 
Reichl, (2v~ whose tail coefficient does involve t/r, as well as 3. Further 
calculations by Gegenmiiller, (37~ using the augmented hydrodynamical 
equations, seem to yield a long-time tail coefficient in agreement with 
Eq. (24) in the Brownian limit, and in agreement with the conventional 
hydrodynamic tail, for the case of a spherical particle with either slip or 
stick boundary conditions. We therefore are tempted to regard Eq. (24) as 
correct. Fourthly there is the problem of explaining the experimental 
results of Paul and Pusey, (28~) who found the tail coefficient to be only 
75% of that given by conventional hydrodynamics or by Eq. (24). In our 
theory we have had to assume that the potentials of interaction were short 
ranged, and we also neglected internal degrees of freedom of the tagged 
particle. In the experimental work it would seem that the short-range 
potential criterion was satisfied. It is conceivable that the second 
assumption could have made all the difference, but this would seem to us 
to be very unlikely. Thus we have to admit that we have found no 
theoretical reason for the discrepancy and we live in hope that a more 
experimental reason for it can be found! The fact that Ohbayashi e t  al. (28b) 

obtained results in agreement with Eq. (24) suggests that "conventional" 
theory could well be entirely adequate. 

We now turn to the Brownian limit. Again the development closely 
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follows I, so we shall be brief. We introduce the functions, f~(12), defined 
by 

f~(12) = (F la~( l '2 ' ) )  �9 RR.~(I'2'; 12) (25) 

so that v(z) may be expressed in the form 

v(z) = (3rnlkBT) ~ t",,(12) * (an(12) F~ ) (26) 

where we have used Eq. (9). The functions f~(12) obey the set of integral 
equations 

fz(12) �9 RR&I(12; 1'2')= (F~a~(l '2 ' ))  ~ ,  (27) 

obtained from combining Eq. (25) with Eq. (10a). Because we are in the 
Brownian limit, we may completely ignore the tagged particle's trans- 
lational and rotational motion in evaluating the correlation functions 
present in R R -  1. Although a completely rigorous proof of this statement is 
probably none too easy, it is almost certainly true, essentially coming 
about because in this limit rl/pm >>D or D,.. 

As in I, we now have to confront the difficulty that in order to 
calculate v(z) from Eq. (26), we need to know f~(12) in the vicinity of the 
Brownian particle--that is, we need to know it in the boundary layer 
region. Unfortunately this is just the region in which we cannot simplify 
Eq. (27) by making use of a gradient expansion, because in this region 
f~(12) varies on a molecular and not a Brownian length scale. Thus our 
strategy will be the following. We first use Eq. (27) to reexpress v(z) simply 
in terms of the far-field forms off~(12). In fact it turns out that we do not 
even need the full functions f~(12)--all that we require are the functions 
~?~(12), given by 

376(12) = f dQ 2 fa(12) (28) 

Thus, for a given orientation of the Brownian particle,)7~(12) only depends 
upon the vector r12. We then examine the large pr'x21 form of Eq. (27), 
which gives us hydrodynamic equations for the functions f~(12). Finally we 
use the full expression of Eq. (27) to attempt to find boundary conditions 
that these far-field functions have to obey at the edge of the boundary 
layer. Of course this has not yet given us an explicit expression for v(z), but 
the object of this section is to investigate the microscopic basis of using 
hydrodynamic equations and boundary conditions. Once these have been 
accepted, then although solving the problem is in general very difficult, at 
least a well-defined starting point has been laid out. 
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To relate v(z) to the far fields, consider Eq. (27) with 7 = P. Let us 
integrate this equation over the angles s and also over the volume V, 
where V is large enough so that outside of it the fluid properties may be 
considered to be unperturbed by the presence of the Brownian particle. 
Typically the surface, S, of this volume will lie on the order of several 
molecular correlation lengths (denoted by ~) away from the "true" surface 
of the particle. If we let a typical dimension of the Brownian particle be R, 
then we have ~/R ~ 1. In order to be a bit more definite about S and V, let 
us consider the quantity G(12)=~ d~zG(12 ) where G(12) is the angular- 
dependent, two-particle distribution function, and let us, for a given orien- 
tation f21, construct the contours of constant G(12). We shall take S to be 
one of these contours, sufficiently far away from the tagged particle such 
that G(12)~- 1 to whatever accuracy we demand. We thus have the result 

fds ds dr12f~(l'2' ) �9 RR~pl(I'2'; 12)=0 
V 

(29) 

We now consider the sum term by term. For e = n and taking the trace of 
the tensors we have the result 

f dl '  d2' fn(12)* RR~I(12; 1'2') 
V 

~- fik B Z i d~r IN , d~ ~ '~n(12) -  fn(12) * (an(12) Vl ) (30) 

Here d is the unit vector normal to the surface S. We see that the second 
term on the right-hand side is (3m~k~T)v(z), while the first term is a sur- 
face integral, which by definition means that on it the functions have their 
far-field forms. 

We next set ~ = p. Now the problem is a little more complicated, 
because we have to consider the dissipative term in Eq. (10b). As in I, 
however, we can make progress because the Mori projection operator Q 
projects out from iSap(12) all terms involving the force exerted on the 
fluid by the tagged particle. Following the argument in I, it can be shown 
that the whole of the volume integral comes from regions near the surface 
S, and as the function takes on its far-field form out there and there is no 
correlation there between a fluid particles coordinates and those of the 
Brownian particle, then we may use a gradient expansion and express the 
original volume integral as a surface integral over S. The term proportional 
to z in Eq. (10b) makes a negligible contribution provided z is small and 
that the average value offp inside V is not of order (R/i) times its value 
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on S. A similar argument goes through upon setting ~ = J. In order to write 
down explicitly the contributions from these terms we need the result 

(k~ TV, o~) ~(g~(z  = O) g.v ) = (t/B - 2t//3) 6~g,~ 

where t/e is the bulk viscosity of the fluid, and g is the microscopic stress 
tensor, given by 

{~__ l } __ TPmtot (31b) e= 2 PiPi+5 Z f o r o  " 
i>1 jesi j>l 

where P is the pressure of the system. Unlike the case of an atomic fluid, o ~ 
is not a symmetric tensor. 

Finally on setting c~ = T, we find that only the Euler term contributes 
to v(z)--the contribution of the dissipative term is of O(~/R) times smaller. 
Following the arguments in I, it is again possible to convert the volume 
integral into a surface integral simply involving the far-field form of ]'r(12). 
Collecting these terms together, and using Eq. (26), we arrive at the new 
expression for v(z), which is 

v,z)-~3~1f d~21fsd(~ {(T''n(12)~-[(~=l)kBT2~l/2 CvS(O) J d] ' r (12)  

(t /B- 2t//3) d~V~j~S(i2 ) (t/+ t / r )  (8" V)~p~(12) 
P P 

(t/ --p ~r) (~/?Vc ~ ~pZ(12) _2t/rp ~z,~z ~ ( 1 2 ) }  (32) 

Here e ~  is the third rank isotropic tensor, C~ is the specific heat at con- 
stant volume, 7 is the ratio of the specific heats, S(0) is the zero-k limit of 
the structure factor of the fluid, and the Greek subscripts and superscripts 
here denote Cartesian components. This result is essentially relating v(z) to 
the integral over the surface S of the normal component of the 
hydrodynamic stress tensor. Thus the first two terms in the curly brackets 
correspond to the pressure contribution, arising from density and tem- 
perature fluctuations, respectively, and the remaining terms correspond to 
the dissipative part of the hydrodynamic stress tensor. The extra terms 
involving t/r arise from the presence of the spin field. This expression is in 
full agreement with that of Hynes eta/., (26) and Reichl, (27) except they also 
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kept terms of higher order in the gradient operator. These extra terms only 
make a contribution to v(z) of O(~/R) times that of the terms in Eq. (32). 
We discuss this more fully later on. 

We now consider the equations obeyed by the far fields, by taking the 
large ]r'12 ] limit of Eq. (27), integrating over ~ and conducting a gradient 
expansion. We obtain once again the equations used in Refs. 26 and 27 
except in a slightly disguised form. They are 

zS(O) 7~(12) + pkB T V~ ~pe(12) = 0 (33a) 

z f S ( 1 2 )  + lV~T"~(12) + L m m2C~S(O) V~]'}(12) 

pm + 5 -  

+ 2rbe.,~V. y~7(12)} = 0 (33b) 

z j ~ ( 1 2 )  + t/r {47}~(12)+ 2e~,t~V . j7~(12)} = 0 (33c) 
pI 

and 

zCo~(12) + F . ( z -  1 ) kB] 
L s(o)c~ j 

1/2 

V~ jTp~(12) - ~ V2~.(12) = 0 (33d) 
P 

where 2 is the thermal conductivity of the fluid. The equations used in 
Refs. 26 and 27 contained in them higher-order terms--for example, extra 
terms appeared in Eq. (33c) involving two gradient operators acting upon 
jT, the transport coefficient multiplying it being a spin-diffusion constant. 
In our opinion, though, it is inconsistent to retain these terms, which are of 
a Burnett order, and not other terms of the same order, such as, for exam- 
ple, three gradient operators acting on jTp in Eq. (33c). Let us note from 
these equations, before proceeding, that we would expect that 
~s~O(1/R)~p, by considering Eqs. (33b) or (33c). 

It now remains to extract the boundary conditions that these functions 
obey on the surface S. We use similar methods to those used in I, and those 
used by Ronis etal338) We shall assume that the average values off~(12) 
within the volume V are not of O(R/~) times their values on S, and we 
shall take z to be O((k~T/m)l/2/a), where a is a molecular length, which is 
always a requirement on z in the Brownian limit. Firstly let us set ? = n in 
Eq. (27). We note that ]'n(12) is a vector. Its vector nature can only be con- 
structed from the vector ~12 and from the vectors describing the orientation 
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of the Brownian particle, which we shall denote by ~')1" We therefore take 
the scalar product of Eq. (27), having set 7 = n, with /~12 and ~ in turn, 
and integrate over the volume V, and the angles 122- As in I, the result is 
the equivalent of the normal velocity boundary condition on S, which 
states 

jTp(12), d =  d, r12 on S (34a) 

- - the  result being correct to O({/R). A similar argument goes through 
upon setting 7 = T on Eq. (27)--we again obtain the equivalent of the zero 
temperature gradient condition, 

d '  Vi'r(12) = 0, r,2 on S (34b) 

again correct to O(~/R). 
For 7 -- P in Eq. (27), the situation is slightly more complicated than it was 
in I. In that situation the functions appearing in the equations only depen- 
ded upon r12. Thus in order to investigate Eq. (27) for 7 = P  for that 
problem, we took the scalar product of the equation with (7-P~zP~2) - 
(F lan(12) )  = 0  as (Flan(12))ocP12 , the zero tangential stress boundary 
condition emerged. If we repeat this calculation here, we find in general no 
such simple result. Thus let us take the scalar product of Eq. (27), 7 = P, 
with ( 1 -  ~),  where ~(12) is the unit vector normal to the contour of con- 
stant G(12) at that point, so ~=~(121,122, r12 ). We then integrate over 122 
and the volume V and we use the result that 

( F  1 an(12) ) = pk B TVG(12) (35) 

so that ~(12) is parallel to VG(12). If we can now assume that PV~(12)l 
O(1/R), in the volume V, then we regain the zero-tangential stress boundary 
condition, which says 

(r/+ t/r)(~ - et0)a a &eVr y~/3(12) + 2vl.e~,,,e('f - 0e)~a O. ~ ( 1 2 )  = 0 (36) 

for r12on S, to lowest order in (~/R). 
If, however, ~(12) is rapidly varying, such that Ng(12)] r O(1/R), as 

would be the case for a microscopically rough surface, then the above con- 
dition does not hold true. Thus in order to get the slip condition we require 
the tagged particle to be microscopically smooth. It is probable that 
hydrodynamic stick boundary conditions apply for rough surfaces, but as 
yet, we do not see how to derive them from Eq. (27), which in this case 
seems to require explicit knowledge as to how ~(12) and the other functions 
behave within the boundary layer region. 
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Lastly we consider the 7 = J  equation in Eq. (27), concentrating in 
particular upon the fi = J term. To make the terms in the equation scalars, 
let us take the vector product with 2(12), and then the scalar product with 
( 1 -  2~), and then integrate over s and V. In the previous equations, we 
always had the result that ~ d ~  2 QiL~a~(12)=V.J, for e = n ,  P, and T, 
where J was a flux. This was because the total number, momentum, and 
energy are conserved variables. It was also because of this result that the 
volume integral over V could be related to the surface integral of the far 
fields over S. For c~ = aT, though, this does not hold true because the internal 
angular momentum of the fluid molecules is not conserved. Thus, 
schematically ~dl? 2 Qi~aj(12)=Jo+V.,] 1. If we ignored the Jo term, 
then we would regain Reichl's "slip" condition on the function yj  on S, the 
transport coefficients appearing in this being the spin diffusion constants 
associated with the correlation function of the flux J1. However there is no 
justification for dropping the Jo term--in fact it is likely that the volume 
integral involving the J0 term is of O(R/~) times the term involving J1. 
Thus we believe that it is impossible to extract a boundary condition on.Tj 
on S from a microscopic view point, even for a molecularly smooth par- 
ticle. 

It might be objected, however, that the reason for this failure was that 
we integrated the spin-density equation, whereas we should have integrated 
a true angular momentum equation. This, however, also fails. If we con- 
sider the identity 

V ~ g - 1  t r fd 2f dr12ffl(lt2 ,) {RRej'(I '2';  12)+ Rap (1 2 ,12 )  /x r12}=0 (37) 

where A denotes a vector product, then the RRfp 1 term does cancel out the 
Jo flux arising from Qi~aj(12). Then it is indeed possible to obtain boun- 
dary conditions on the surface S. The problem, however, is that because 
Ir121 ~ e ,  then the second term in curly brackets is O(R/~) times the first 
and is totally dominant when the resulting integrated expression is 
analyzed to lowest order in ~/R. In fact the information one gets from 
doing this is identical to that obtained by considering Eq. (27) with y = p 
alone. 

So, in conclusion, provided that the tagged particle's surface is 
microscopically smooth, we have obtained once again the usual slip boun- 
dary conditions, which arose from the equations of motion of the conser- 
ved variables. These conditions, though, are sufficient to solve Eqs. 
(33a)-(33d). If, for instance we take the z = 0 limit of these equations, then 
from Eq. (33c) we have 

2Y3~(12) + e,,~Vu j~p'(12) = 0 (38) 
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If this result is then substituted into Eqs. (32), (33c), and (36), we see that 

all the terms involving r/r or ~ cancel out--that is, we are once again left 
with the conventional hydrodynamic equations with slip boundary con- 
ditions, which lead to the usual Stokes-Einstein result for D. 

As we mentioned before, the augmented hydrodynamic equations used 
in Refs. (26), (27) contained higher-order terms in the gradient operator 
than we have considered here, and they used a boundary condition on the 
spin field in order to fully determine the problem. The expressions then 
obtained for D are of the Stokes-Einstein form, with correction terms of 
O(~/R) times smaller. In practice it could well be possible that these correc- 
tion terms are accurate estimates of the true correction terms, but it must 
be pointed out that equally they need not be. The equations and boundary 
conditions used are not consistent to the next order in (i/R), which is the 
Burnett level of description--all manner of other effects, including boun- 
dary layer effects, come into their own at this level of description, and 
simply picking out certain contributions strikes us as being a dangerous 
procedure. We believe, therefore, that it is safest to stick to the normal 
hydrodynamic equations and boundary conditions, for simply augmenting 
the set by including a spin field does not form a systematic theory of 
corrections to hydrodynamics. Furthermore the boundary conditions 
required on the spin field in order to solve these higher-order equations do 
not seem to come out naturally from a microscopic treatment. 

4. THE R O T A T I O N A L  D I F F U S I O N  C O N S T A N T  A N D  THE A M C F  

In this section we apply the techniques used in the previous section to 
investigate the long-time tail and Brownian limit of the angular momentum 
correlation function. We denote the AMCF by CR(t), and it is given by 

CR(t) = ~Jl(t) '  J~ ) (39) 

where J1 is the angular momentum of particle 1 about its center of mass. 
We use Mori's generalized Langevin equation ~29) to write the Laplace 
transform of the AMCF, CR(z), in the form 

CR(z) = dt e z'C(t) 

3kB TI1 
- z + v R ( z )  (40) 

where vR(z), the rotational friction coefficient, is given by 

vR(z) = (3I, k B T ) - ~ (  { [z - Q z i ~ ]  - 1  N l  } . N1 ) (41) 
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Here I~ is the moment of inertia of particle 1 (I~ = �89 Tr !1), N~ is thr torque 
exerted by the fluid upon the tagged particle and Q2 projects a variable 
orthogonal to J~. We can now couple N1 to the variables a~(12) given in 
Eqs. (5) and (6), and again we have the exact result that N~ is simply an 
integral over a~(12), or 

N 1 = ( N l a n ) ( a ~ a . )  -1 a n (42) 

We first consider the long-time limit, this time it being our suspicion that 
C(~)(z)ocz 3/2. Strictly speaking, according to our previous notation, 
v~l(z )~z ,  but for long-time behavior we are looking for nonanalytic 
behavior of z at the origin, so we shall continue to use the superscript (1) 
with that understanding. The arguments advanced in Section 3 still go 
through, and we obtain as the equivalent of Eq. (16) the result 

v~)(z) = (311kBT)-1(2n) -3 f dk 

l *  x E [ ( N l a n )  * (1 +RR(~ S(~ * e 'k'~12DF{mlnl\[~ 11~ DZ2~2((22)] 
11,12 

• "'~fl;kO(1)1112' [ eik'r'12Dhln t (~'~2'1) Dl2rn2nz t'~" 21~'~O' ~t C ( 0 ) ,  RR(O)+ 1)~ * ( a . F 1 ) ]  

(43) 

Once again it can be shown that the dominant long-time tail arises from 
the ll = 12 = 0  term, and in particular for c~, ~ = p, J. The expressions 
required are those for (1)oo �9 Rpp;k--gwen in Eq. (18), and 

R(~)oo _ ik~ f 1 
pTJ~;k - -  --eC~fly 2pmkBT _Z + k2(q/pm + D) 

_ _R(1)oo* 
- -  yl~ p z ;  k 

and 

1 

k2(~/pm +D)}  
(44a) 

R.~OO _(T_ff)~. { ] 1 } 
J=Jl~;k - -  Z + k201/pm + D) kZ(q/pm + D) 

(44b) 

The long-time tail arises from the small-k limit of the terms in square 
brackets. For ~ =/~ = J, these terms are nonzero when Ikl---' 0. For c~ = p 
the situation is different. N1 is a pseudovector, whereas 

~o) .. . .  S(~149 12) is an ordinary vector. Thus this dl  d2 R R ~  (1 2 ; 1'2') �9 -o:p , -  - -  , 

time on setting ]kl = 0  in the first square bracketed term the expression 
must have value zero, on grounds of symmetry. The first nonvanishing 



Diffusion of an Anisotropic Particle in a Molecular  Liquid 235 

term is O(Ik]), obtained by expanding the exponential to first order in k, 
and is of the form of an antisymmetric second-rank tensor oce~avko r A 
similar argument applies for /?= p. We thus see that all four terms, to 
lowest order in k, give rise to an integral over k of k2/(z + k2(rl/prn + D)), 
which indeed corresponds to the expected t 5/2 tail. 

Collecting terms, we simplify Eq. (43) to 

where 

a n d  

- 
gig2 

(3I~ kB T)(2rc)3(18mpk~ T) 

1 1 
Xlk,<k dkk2{z+k2(rl-/-pm+D) k2(rl/pm+D)} (45a) 

g~ = f dl  d2(N~ 'a , ( l "2" ) )  �9 RR(~ ' ' _ . . ~  , ~ _ , 1'2') 

�9 [S~~ (1'2';  12)  - -~p,o,- S(~ (1')'._, 1 2 ) .  r~2~ �9 e ~ ]  (45b) 

t" 
j d l  d2 . = [e~o~r12Sp~(12, 1 tRI  ) _ S(a~ 1'2')] g2 

�9 RR~~ 2 , 1 " 2 " )  �9 ~,a,,t z ) N~') (45c) 

where the Greek letters /~, v, and co refer to Cartesian components of the 
vectors or tensors. Once again the expressions for g~ and g2 may be sim- 
plified, to give 

gl = (3IlkBT) v~) 

= -g2 (46a) 

where we used the results 

N1 = - ~ ( J ~ - r ~  A 1~) (46b) 

a rewriting of the law of conservation of angular momentum, and 

v~ ~ = (3IlksT)-X ( N l a , )  * RR~ ~ * ( a n N 1 )  (46c) 

the rotational version of Eq. (21). Finally to get the long-time tail of the 
AMCF we use 

[v~)]2 (47) 
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obtained from Eq. (40), and we substitute for v~)(z) from Eq. (45a), using 
the values for gl and g2 given in Eq. (45). Again the v~ ) terms cancel, and 
after taking an inverse Laplace transform and doing the k integral, we 
obtain the result 

lim CR(t) = 3keT~rc [rc(tl/Pm + D)t] -s/2 (48) 
t-~ o~ 32mp 

Alternatively, if we had considered the angular velocity correlation function 
instead of the angular momentum correlation function, the factor of/~1 in 
Eq. (47) would be missing. Thus we again have obtained a remarkably sim- 
ple expression for the long-time tail of the AMCF, for a tagged particle of 
arbitrary mass, size, and shape. This result agrees in the Brownian limit 
with the hydrodynamic result for a rough sphere and is in agreement with 
the ring kinetic theory results for rough spheres. (18) Once again no 
rotational viscosities appear in the tail coefficient. 

Finally it is possible to consider the Brownian limit of the AMCF, 
following the methods given in Section 3 for the VCF. The results of doing 
this are once again that vR(z) is given by solving the normal equations of 
hydrodynamics subject to slip-boundary conditions on the surface S, 
provided the tagged particle is microscopically smooth, so that to lowest 
order in (~/R), vR(z) does not involve r/r or spin-diffusion constants. 
Corrections to v~(z) in (~/R) will involve these new effects, but they will 
also involve may other ones not included in the augmented set of 
hydrodynamic equations used in Refs. 26 and 27. Thus while the Brownian 
limit of those equations is the same as that of conventional hydrodynamics, 
the correction terms obtained could well not be trustworthy. 

5. D I S C U S S I O N  

In the preceding sections we have examined the long-time tail and 
Brownian limits of the VCF and AMCF, for a particle of arbitrary mass, 
shape, and size moving in a fluid of nonspherical particles. We found the 
long-time tail coefficients to be of a remarkably simple form, which, on tak- 
ing the Brownian limit and taking the tagged particle to be spherical, 
agreed with the conventional hydrodynamic results. These coefficients did 
not involve either the rotational viscosity or spin diffusion constants of the 
fluid. The reason that the anisotropy of the tagged particle had so little 
effect upon the long-time behavior, was that these effects were damped out 
at long times by the rotational diffusion of the particle--only an isotropic 
part [-the / 1 = / 2 = 0  terms in Eqs. (16) and (43)] contributed to the 
asymptotic behavior. We note though, that in general this result would not 



Diffusion of an Anisotropic  Particle in a Molecu lar  Liquid 237 

agree with that obtained from the following calculation, in the high mass 
limit. In principle one could calculate a frequency dependent drag (or tor- 
que) coefficient on a fixed particle, and then average this quantity over all 
orientations of the particle. The Einstein (or Einstein-Debye) relation then 
would give the frequency-dependent VCF or AMCF, and hence the long- 
time behavior in the high mass limit. This disagreement would be due to 
the fact that the latter calculation does not take into account the self- 
motion of the tagged particle properly, except in the infinite mass limit. 
Thus, for a particle of finite mass, we believe that our results EEqs. (24) 
and (47)] are correct at sufficiently long times. However, if we posed the 
question as to what would happen at long, but not infinitely long, times as 
we made the particle more and more massive, then the drag calculation 
would give the correct result for a sufficiently massive particle. 

As for the Brownian limits, we believe that they may be obtained 
simply using the conventional equations of hydrodynamics. Augmenting 
the set by including a spin field will not alter the large-particle limit, but 
will introduce estimates for correction terms of O(~/R) times smaller than 
the leading terms. However as the theory is not consistent to that order, 
these estimates could well be in error. If the tagged particle is 
microscopically smooth, the required hydrodynamic boundary conditions 
are the slip ones. If, however, the particle is not smooth, we would expect 
stick boundary conditions to apply, but we were unable to show this from 
a microscopic viewpoint. The basic problem is that, using the conservation 
laws, it is easy to obtain conditions upon the normal component of either 
the velocity, stress tensor, or temperature gradient on an outer surface. It is 
not easy, however, to obtain a boundary condition, on the outer surface, 
for the tangential component of the velocity, which is required for stick. It 
is interesting to note, though, that if we define the macroscopic stress ten- 
sor by Y, it is possible to obtain an expression for the ratio ~. Y. ~/~. ~- t-, 
where ~ and t-are normal and tangential vectors, respectively, on the outer 
surface, although the expression for the constant of proportionality is 
rather obscure. If we repeated the Stokes-law calculation for the drag on a 
sphere using the normal velocity boundary condition and the new boun- 
dary condition ~ . ~ - { / O . f f . O =  1, then the usual stick result is again 
obtained. Of course this leaves us with two problems. The first is why, on 
microscopic grounds, should this ratio be unity, and the second is how, for 
a general system, can one relate a boundary condition on radial and 
tangential components of the stress tensor to the widely used and successful 
stick boundary condition. 

So, in summary, we hope we have given a reasonably careful account 
of the derivation of long-time tail and Brownian limits in these anisotropic 
systems. Clearly much work remains to be done to understand the stick 
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boundary condition, and the problems of obtaining a good theory for 
molecular diffusion from first principles also must soon be attacked. 
Nevertheless we hope that the results given here can help to give checks on 
possible future, approximate theories. 
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